Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00

The Effects of Firing Costs on Employment and Hours per Employee

Armando Näf¹ Yannic Stucki² Jacqueline Thomet²

¹University of Bern

²Swiss National Bank

Brown Bag November 13, 2019

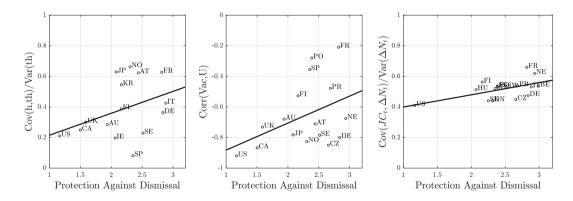
Näf, Stucki, Thomet

University of Bern, SNB

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00

RESEARCH QUESTION AND MOTIVATION

What is the short run effect of employment protection legislation (EPL) on labor market outcomes and welfare of an economy?


Existing literature typically focuses on long run outcomes

- Examples: Hopenhayn & Rogerson (JPE 1993), Pries & Rogerson (JPE 2005)
- Most work does not distinguish between intensive and extensive labor margin
 - Recent Exception: Llosa, Ohanian, Raffo & Rogerson (mimeo 2016)

2/23

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00

MOTIVATING DATA

・・ロ・・日・・日・ 山口 うへつ

Näf, Stucki, Thomet

University of Bern, SNB

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00
				,

OUR CONTRIBUTION

- 1. Establish three empirical regularities between EPL and laber market dynamics with novel cross-country data sets
- 2. Provide a theoretical model for the analysis of EPL that replicates the empirical regularities.
- 3. Quantify the effect of EPL on labor market dynamics in a theoretical exercise
- 4. Analyze the impact of (i) omitting a flexible intensive margin and (ii) abstracting from distinct job creation and job destruction
 - see Llosa et al. for a similar analysis on a flexible intensive margin

Motivation	Model	Calibration	Results	Conclusion
000	●00000000	000	0000	

Model - Overview

RBC model with

- 1. Matching friction on labor market (Merz JME 1995, Andolfatto AER 1996)
- 2. Hiring cost function (Yashiv AER 2000, Merz and Yashiv AER 2007)
- 3. Discount factor shocks (Hall AER 2017)
- 4. Job specific productivity shocks \rightarrow Endogeneous firing decision
- 5. Dismissal protection: Wasteful tax on firing

5 / 23

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	

Model - Household

Household problem:

$$\max_{c_t,b_t} \mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \exp(-d_t) \beta^t \left(\frac{c_t^{1-\sigma}}{1-\sigma} - \xi_h n_t \int_{\tilde{a}_t}^{\infty} \frac{h_t(a)^{1+\nu}}{1+\nu} \frac{g(a)}{1-G(\tilde{a}_t)} da - \xi_h n_t \right) \right\}$$

s.t. $c_t + b_t \le R_{t-1} b_{t-1} + n_t \int_{\tilde{a}_t}^{\infty} w_t(a) h_t(a) \frac{g(a)}{1-G(\tilde{a}_t)} da + \Pi_t$

- \blacktriangleright Household consists of a continuum of workers \rightarrow Share risk together
- $\xi_n n_t$ reflects fixed employment costs.
- Stochastic discount factor

The Effects of Firing Costs on Employment and Hours per Employee

Motivation	Model	Calibration	Results	Conclusion
000	00000000	000	0000	00

Model

Aggregate law of motion of employment:

$$\begin{split} n_t &= (1 - \rho_t)(n_{t-1} + m_{t-1}) \\ m_t &= B u_t^{\mu} v_t^{1-\mu}, \ u_t &= (1 - n_t) \\ q(\theta_t) &= \frac{m_t}{v_t} = B \theta_t^{-\mu}, \ \theta_t &= \frac{v_t}{u_t} \\ \rho_t &= G(\tilde{a}_t) \\ \ln(a) &\sim N(\mu_a, \sigma_a) \\ d_t &= \rho_d d_{t-1} + \varepsilon_{dt}, \ \varepsilon_{d,t} \sim N(0, \sigma_d) \end{split}$$

うせん 正則 スポット ポポット 白マ

Näf, Stucki, Thomet

The Effects of Firing Costs on Employment and Hours per Employee

Motivation Model	Calibration	Results	Conclusion
000 0000000	000	0000	00

Model - Firm

Firms Problem:

$$\max_{v_t, n_t, \tilde{a}_t} \mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \exp(-d_t) \beta^t \lambda_t \dots \left(y_t - n_t \int_{\tilde{a}_t}^{\infty} w_t(a) h_t(a) \frac{g(a)}{1 - \rho_t} da - \psi \Gamma(v_t, u_t, \bar{y}_t) - n_t \frac{\rho_t}{1 - \rho_t} F \right) \right\}$$

s.t. $y_t = n_t \int_{\tilde{a}_t}^{\infty} Z_t h_t(a) a \frac{g(a)}{1 - \rho_t} da$
 $\psi \Gamma(v_t, u_t, \bar{y}_t) = \psi \frac{(\phi v_t + (1 - \phi)q(\theta_t)v_t)^{1 + \gamma}}{1 + \gamma} \bar{y}_t$
 $n_t = (1 - \rho_t)(n_{t-1} + q(\theta_{t-1})v_{t-1})$

Näf, Stucki, Thomet

University of Bern, SNB

Motivation Model			Results	Conclusion
0000 0000	00000	000	0000	00

Model - Firm

Job creation condition:

$$\underbrace{\overbrace{q(\theta_t)}^{(1)}}_{q(\theta_t)} = \beta \mathbb{E}_t \left\{ \underbrace{\exp(-d_{t+1})}_{\exp(-d_t)} \frac{\lambda_{t+1}}{\lambda_t} \left[\underbrace{\overbrace{(1-\rho_{t+1})}^{(2)}}_{(1-\rho_{t+1})} \left(\underbrace{\overbrace{y_{t+1}}^{(3)}}_{n_{t+1}} \dots \right) \right. \\ \left. - \underbrace{\int_{\widetilde{a}_{t+1}}^{\infty} w_{t+1}(a)h_{t+1}(a) \frac{g(a)}{1-\rho_{t+1}} da}_{(4)} + \underbrace{\underbrace{\psi\Gamma'_{t+1,\nu}}_{q(\theta_{t+1})}}_{(5)} \right) - \underbrace{\rho_{t+1}F}_{(6)} \right] \right\}$$

Näf, Stucki, Thomet

University of Bern, SNB

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00

Model - Firm

Job destruction condition:

$$\underbrace{w_t(\tilde{a}_t)h_t(\tilde{a}_t)}_{(1)} = \underbrace{\frac{\psi\Gamma'_{t,v}}{q(\theta_t)}}_{(2)} + \underbrace{Z_th_t(\tilde{a}_t)\tilde{a}_t}_{(3)} + \underbrace{F}_{(4)}$$

Näf, Stucki, Thomet

University of Bern, SNB

Motivation	Model	Calibration	Results	Conclusion
000	000000●000	000	0000	

Model - Bargaining

Each firm-worker match generates a rent $S_t(a) = S_t^W(a) + S_t^F(a) + F$, which is split in individual Nash Bargaining. Note that the firing cost is part of the bargaining as it reduces the firm's threat point.

 Firm and Worker simultaneously bargain over hourly wage payment and hours worked

$$[w_t(a), h_t(a)] = \operatorname{argmax} \left(\mathcal{S}_t^W(a) \right)^{\zeta} \left(\mathcal{S}_t^F(a) + F \right)^{1-\zeta}$$

・ロト・日本・エート・エート シュート

Näf, Stucki, Thomet

University of Bern, SNB

Motivation	Model	Calibration	Results	Conclusion
000	0000000000	000	0000	00

Model - Bargaining

Hours:

$$h_t(a) = \left(rac{\lambda_t Z_t a}{\xi_h}
ight)^{rac{1}{
u}}$$

Wage:

$$w_t(a)h_t(a) = \frac{(1-\zeta)}{\lambda_t} \left(\xi_h \frac{h_t(a)^{1+\nu}}{1+\nu} + \xi_n \right) + \zeta \theta_t \psi \Gamma'_{t,\nu} + \zeta Z_t h_t(a) a$$
$$+ \zeta \left(1 - (1-\theta_t q(\theta_t)) \beta \mathbb{E}_t \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_t)} \frac{\lambda_{t+1}}{\lambda_t} \right\} \right) F$$

Näf, Stucki, Thomet

University of Bern, SNB

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00

Model - Productivity Threshold

Productivity of the marginal worker:

$$\tilde{a}_{t} = \left(\frac{\frac{\xi_{n}}{\lambda_{t}} + \frac{\zeta}{1-\zeta}\theta_{t}\psi\Gamma_{t,\nu}' - \frac{1}{1-\zeta}\frac{\psi\Gamma_{t,\nu}'}{q(\theta_{t})} - \left(1 + \frac{\zeta}{1-\zeta}(1-\theta_{t}q(\theta_{t}))\beta \mathbb{E}_{t}\left\{\frac{\exp(-d_{t+1})}{\exp(-d_{t})}\frac{\lambda_{t+1}}{\lambda_{t}}\right\}\right)F}{Z_{t}^{\frac{1+\nu}{\nu}}\left(\frac{\lambda_{t}}{\xi_{h}}\right)^{\frac{1}{\nu}}\frac{\nu}{1+\nu}}\right)^{\frac{1}{\nu}}$$

 Higher Firing costs reduce the productivity level of the marginal worker. Firms become less willing to fire an unproductive employee.

ELE DOG

Motivation	Model	Calibration	Results	Conclusion
000	00000000	000	0000	00

Model - Market Clearing

Market clearing:

$$y_t = c_t + \psi \Gamma_t + n_t \frac{\rho_t}{1 - \rho_t} F$$

Näf, Stucki, Thomet

University of Bern, SNB

The Effects of Firing Costs on Employment and Hours per Employee

14 / 23

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00

Calibration - Standard Parameters

Parameter	Value	Source			
Preferences					
β	0.99	pprox 4% annual real rate			
σ	0.5	-			
u	1.8	pprox 2 Chetty, Guren, Manoli and Weber (2011)			
Matcl	hing, Bargaiı	ning, Separation, Hiring and Firing costs			
В	0.94	qpprox 0.9 Merz (1995), Andolfatto (1996)			
μ	0.4	Blanchard and Diamond (1989)			
ζ	0.4	Hosios Condition			
F	0	-			

Näf, Stucki, Thomet

きょう 二田 エル・エリ・エリ・

University of Bern, SNB

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00

Calibration - Further Parameters

Parameter	Value	Parameter	Value	Parameter	Value			
	First M	loments: $ ho=0.1$,	h = 0.33	, $U=0.1$				
ψ	1.69	ξh	13.36	ξn	0.30			
		Second Mor	nents:					
ϕ	0.15	γ	0.90	σ_{a}	0.33			
Shock Processes:								
ZSS	1	σ_z	0.0144	$ ho_z$	0.95			
d _{SS}	0	σ_d	0.3434	$ ho_d$	0.75			

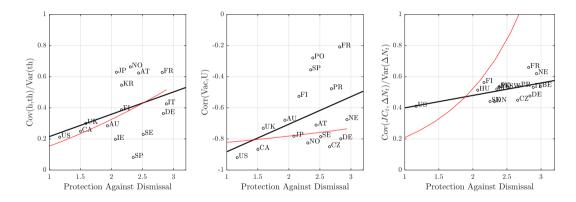
◆□▶ ◆□▶ ◆目▶ ◆目▼ ●○○

Näf, Stucki, Thomet

University of Bern, SNB

Motivation	Model	Calibration	Results	Conclusion
000	000000000	00●	0000	00

Calibration: Second Moments


- Calibrate the parameters to match the second moments
- Compare the labour market variables in the benchmark setting to the extensive labour margin

	US Data	Benchmark Model
$\sigma(\mathbf{v})/\sigma(\mathbf{n})$	10.96	9.01
$\sigma(u)/\sigma(n)$	11.90	16.84
$\sigma(h)/\sigma(n)$	0.38	0.37
Corr(u, v)	-0.92	-0.82

Note: The standard deviations (std.) are based on HP-filtered simulations.

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	●000	00

Results: Motivating Data

◇□▶ ◇□▶ ◇目▼ ◇目▼ ◇□>

Näf, Stucki, Thomet

University of Bern, SNB

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00

Results: Effect of firing costs

	(a)	Steady	state	(b)	Relative	std.	(c) A	bsolute	std. ⁽ⁱ⁾
	<i>F</i> =0%	F=5%	F=10%	F=0%	F=5%	F=10%	 F=0%	F=5%	F=10%
у	0.327	0.328	0.330	2.628	2.529	2.449	0.860	0.830	0.807
п	0.900	0.916	0.933	0.862	0.575	0.345	0.775	0.527	0.321
h	0.330	0.328	0.326	0.319	0.333	0.362	0.105	0.109	0.118
ρ	0.100	0.079	0.059	6.328	6.089	5.901	0.633	0.484	0.350
V	0.111	0.084	0.060	14.511	14.153	13.810	1.609	1.189	0.823
f	0.100	0.079	0.059	7.363	6.924	6.522	0.736	0.547	0.384
т	0.100	0.079	0.059	6.403	6.716	7.004	0.640	0.531	0.412
Welf. cost ⁽ⁱ⁾	-	0.569%	1.017%	-	0.574%	1.020%			

Note: The standard deviations (std.) are based on HP-filtered simulations. (*i*) The welfare cost is measured as proportion of consumption the representative agent would sacrifice to avoid the increase in firing costs (compared to F = 0)

▲□▶ ▲□▶ ▲目▶ ▲目▼ ある⊙

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	00

RESULTS: ROLE OF THE INTENSIVE MARGINS (FIXED HOURS

	(a) ∆%	St. state	(b) ∆% ∣	Rel. std.	(c) ∆% /	Abs. std.
	Flexible	Fixed	Flexible	Fixed	Flexible	Fixed
у	0.70%	1.08%	-6.81%	-8.76%	-6.16%	-7.78%
n	3.61%	2.71%	-59.99%	-42.61%	-58.55%	-41.06%
h	-1.36%	-	13.61%	-	12.07%	-
ho	-40.61%	-34.37%	-6.75%	-4.49%	-44.61%	-37.32%
V	-46.23%	-41.43%	-4.84%	-2.99%	-48.83%	-43.18%
f	-41.12%	-35.09%	-11.42%	-8.32%	-47.84%	-40.49%
т	-41.12%	-35.09%	9.39%	5.71%	-35.59%	-31.39%
Welf. cost	1.017%	1.144%	1.020%	1.149%		

Note: The standard deviations (std.) are based on HP-filtered simulations. (i): The values correspond to the percentage change in steady state between F=10% and F=0 for two different models: *flexible*' corresponds to the benchmark model: *fixed* corresponds to the adjusted benchmark with fixed hours.

University of Bern, SNB

▲□▶ ▲□▶ ▲目▶ ▲目▼ ある⊙

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	000●	

Further - To be done

- Severance payments instead of wasteful dismissal costs. Model
- Allow for a different matching behaviour
 - Newly made matches can be dismissed at no cost.
- Quantify the different effect of EPL when distinguishing between firing costs on job destruction versus on changes in employment.

000 000000000 000 000 0 00	Motivation	Model	Calibration	Results	Conclusion
	000	000000000	000	0000	• 0

CONCLUSION

- Intensive margin plays an important role when analyzing the effect of employment protection legislations.
- Firms make use of the hiring margin to avoid firing cost.
 - ▶ Welfare cost is about 13% higher if we don't consider the hiring margin.
- Firing costs can explain a large part of the observed data
 - The model is overestimating the impact of the hiring margin on the variation in labour growth.

Motivation	Model	Calibration	Results	Conclusion
000	000000000	000	0000	0.

Thank you!

Näf, Stucki, Thomet

University of Bern, SNB

Bargaining Surplus ●○	Fixed Hours 00000	Severance Payments

BARGAINING BACK

Surplus Worker: $\mathcal{S}_t^W = \mathcal{E}_t(a) - \mathcal{U}_t$

$$\begin{split} \mathcal{E}_{t}(a) = & w_{t}(a)h_{t}(a) - \frac{1}{\lambda_{t}} \left(\xi_{h} \frac{h_{t}(a)^{1+\nu}}{1+\nu} + \xi_{n} \right) + \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \dots \right. \\ & \left((1-\rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{E}_{t+1}(a) \frac{g(a)}{1-\rho_{t+1}} da + \rho_{t+1} \mathcal{U}_{t+1} \right) \right\} \\ \mathcal{U}_{t} = & \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \left[\theta_{t} q(\theta_{t}) \dots \right. \\ & \left((1-\rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{E}_{t+1}(a) \frac{g(a)}{1-\rho_{t+1}} da + \rho_{t+1} \mathcal{U}_{t+1} \right) + (1-\theta_{t} q(\theta_{t})) \mathcal{U}_{t+1} \right] \end{split}$$

ショット 本語 マイヨッ 本語 マイロッ

Näf, Stucki, Thomet

University of Bern, SNB

MODEL - BARGAINING BACK

Surplus Firm: $S_t^F = \mathcal{J}_t(a) - \mathcal{V}_t$

$$\begin{aligned} \mathcal{J}_{t}(a) = & Z_{t}h_{t}(a)a - w_{t}(a)h_{t}(a) + \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \dots \right. \\ & \left(\left(1 - \rho_{t+1}\right) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{J}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1}(\mathcal{V}_{t+1} - F) \right) \right\} \\ \mathcal{V}_{t} = & -\psi \Gamma_{t,v}' + \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \left[q(\theta_{t}) \dots \right. \\ & \left(\left(1 - \rho_{t+1}\right) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{J}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1}(\mathcal{V}_{t+1} - F) \right) + \left(1 - q(\theta_{t})\right) \mathcal{V}_{t+1} \right] \right\} \end{aligned}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

University of Bern, SNB

Näf, Stucki, Thomet

FIXED HOURS - HOUSEHOLD BACK

Household problem:

$$\max_{c_t, b_t} \mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \exp(-d_t) \beta^t \left(\frac{c_t^{1-\sigma}}{1-\sigma} - \xi_h n_t \frac{\bar{h}^{1+\nu}}{1+\nu} - \xi_n n_t \right) \right\}$$

s.t. $c_t + b_t \le R_{t-1} b_{t-1} + n_t \bar{h} \int_{\tilde{a}_t}^{\infty} w_t(a) \frac{g(a)}{1-G(\tilde{a}_t)} da$

- hours is fixed at steady state value
- $\xi_n n_t$ reflects fixed employment costs.
- Stochastic discount factor

FIXED HOURS - FIRM BACK

Firms Problem:

$$\max_{v_t, n_t, \tilde{a}_t} \mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \exp(-d_t) \beta^t \lambda_t \dots \left(y_t - n_t \bar{h} \int_{\tilde{a}_t}^{\infty} w_t(a) \frac{g(a)}{1 - \rho_t} da - \psi \Gamma(v_t, u_t, y_t) - n_t \frac{\rho_t}{1 - \rho_t} F \right) \right.$$

s.t. $y_t = n_t \bar{h} \int_{\tilde{a}_t}^{\infty} Z_t(a) a \frac{g(a)}{1 - \rho_t} da$
 $\psi \Gamma(v_t, u_t, y_t) = \psi \frac{(\phi v_t + (1 - \phi)q(\theta_t)v_t)^{1 + \gamma}}{1 + \gamma} y_t$
 $n_t = (1 - \rho_t)(n_{t-1} + q(\theta_{t-1})v_{t-1})$

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ■ ■ → ○ ○ ○

00 000 0000000000000000000000000000000	Bargaining Surplus	Fixed Hours	Severance Payments
	00	00000	00000

FIXED HOURS - BARGAINING BACK

Each firm-worker match generates a rent $S_t(a) = S_t^W(a) + S_t^F(a) + F$, which is split in individual Nash Bargaining. Note that the firing cost is part of the bargaining as it reduces the firm's threat point.

Firm and Worker bargain over hourly wage payment

$$w_t(a) = \operatorname{argmax} \left(\mathcal{S}_t^W(a)
ight)^{\zeta} \left(\mathcal{S}_t^F(a) + F
ight)^{1-\zeta}$$

Bargaining Surplus	Fixed Hours	Severance Payments
00	00000	00000

FIXED HOURS - WORKER SURPLUS BACK

Surplus Worker: $\mathcal{S}_t^W = \mathcal{E}_t(a) - \mathcal{U}_t$

$$\begin{split} \mathcal{E}_{t}(a) = & w_{t}(a)\bar{h} - \frac{1}{\lambda_{t}} \left(\xi_{h} \frac{\bar{h}^{1+\nu}}{1+\nu} + \xi_{n} \right) + \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \dots \right. \\ & \left((1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{E}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1} \mathcal{U}_{t+1} \right) \right\} \\ \mathcal{U}_{t} = & \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \left[\theta_{t} q(\theta_{t}) \dots \right. \\ & \left((1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{E}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1} \mathcal{U}_{t+1} \right) + (1 - \theta_{t} q(\theta_{t})) \mathcal{U}_{t+1} \right] \right\} \end{split}$$

うんの 正面 (画を)(画を)(目を)

University of Bern, SNB

Näf, Stucki, Thomet

00 0000 00000 00000	Bargaining Surplus	Fixed Hours	Severance Payments
		00000	00000

FIXED HOURS - FIRM SURPLUS BACK

Surplus Firm: $\mathcal{S}_t^F = \mathcal{J}_t(a) - \mathcal{V}_t$

$$\begin{aligned} \mathcal{J}_{t}(a) = & Z_{t}\bar{h}a - w_{t}(a)\bar{h} + \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \dots \\ & \left(\left(1 - \rho_{t+1}\right) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{J}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1}(\mathcal{V}_{t+1} - F) \right) \right\} \\ \mathcal{V}_{t} = & -\psi \Gamma'_{t,\nu} + \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \left[q(\theta_{t}) \dots \\ & \left(\left(1 - \rho_{t+1}\right) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{J}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1}(\mathcal{V}_{t+1} - F) \right) + (1 - q(\theta_{t}))\mathcal{V}_{t+1} \right] \right\} \end{aligned}$$

うんの 正面 (画を)(画を)(目を)

University of Bern, SNB

Näf, Stucki, Thomet

MODEL - BARGAINING BACK

Each firm-worker match generates a rent $S_t(a) = S_t^W(a) + S_t^F(a)$, which is split in individual Nash Bargaining. Note that the firing cost is no longer part of the surplus because it is not wasteful.

 Firm and Worker simultaneously bargain over hourly wage payment and hours worked

$$[w_t(a), h_t(a)] = \operatorname{argmax} \left(\mathcal{S}_t^{\mathcal{W}}(a) - \mathcal{F}
ight)^{\zeta} \left(\mathcal{S}_t^{\mathcal{F}}(a) + \mathcal{F}
ight)^{1-\zeta}$$

Bargaining Surplus	Fixed Hours	Severance Payments
00	00000	0000

SEVERANCE PAYMENT - WORKER SURPLUS BACK

Surplus Worker: $\mathcal{S}_t^W = \mathcal{E}_t(a) - \mathcal{U}_t$

$$\begin{split} \mathcal{E}_{t}(a) = & w_{t}(a)h_{t}(a) - \frac{1}{\lambda_{t}} \left(\xi_{h} \frac{h_{t}(a)^{1+\nu}}{1+\nu} + \xi_{n} \right) + \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \dots \right. \\ & \left((1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{E}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1} \left(\mathcal{U}_{t+1} + F \right) \right) \right\} \\ \mathcal{U}_{t} = & \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \left[\theta_{t} q(\theta_{t}) \dots \right. \\ & \left((1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{E}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1} \left(\mathcal{U}_{t+1} + F \right) \right) + (1 - \theta_{t} q(\theta_{t})) \mathcal{U}_{t+1} \right] \end{split}$$

▲□▶▲□▶▲≡▶▲≡▶ 三世 のへで

Näf, Stucki, Thomet

University of Bern, SNB

Bargaining Surplus	Fixed Hours	Severance Payments
00	00000	00000

SEVERANCE PAYMENT - FIRM SURPLUS BACK

Surplus Firm: $\mathcal{S}_t^F = \mathcal{J}_t(a) - \mathcal{V}_t$

$$\begin{aligned} \mathcal{J}_{t}(a) = & Z_{t}h_{t}(a)a - w_{t}(a)h_{t}(a) + \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \dots \right. \\ & \left(\left(1 - \rho_{t+1}\right) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{J}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1}(\mathcal{V}_{t+1} - F) \right) \right\} \\ \mathcal{V}_{t} = & - \psi \Gamma'_{t,v} + \beta \mathbb{E}_{t} \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_{t})} \frac{\lambda_{t+1}}{\lambda_{t}} \left[q(\theta_{t}) \dots \right. \\ & \left(\left(1 - \rho_{t+1}\right) \int_{\tilde{a}_{t+1}}^{\infty} \mathcal{J}_{t+1}(a) \frac{g(a)}{1 - \rho_{t+1}} da + \rho_{t+1}(\mathcal{V}_{t+1} - F) \right) + \left(1 - q(\theta_{t})\right) \mathcal{V}_{t+1} \right] \right\} \end{aligned}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆

University of Bern, SNB

Näf, Stucki, Thomet

Bargaining Surplus	Fixed Hours	Severance Payments
00	00000	00000

SEVERANCE PAYMENT - BARGAINING BACK

Hours:

$$h_t(a) = \left(rac{\lambda_t Z_t a}{\xi_h}
ight)^{rac{1}{
u}}$$

Wage:

$$w_t(a)h_t(a) = \frac{(1-\zeta)}{\lambda_t} \left(\xi_h \frac{h_t(a)^{1+\nu}}{1+\nu} + \xi_n \right) + \zeta \theta_t \psi \Gamma'_{t,\nu} + \zeta Z_t h_t(a) a \\ + \left(1 - (1-\theta_t q(\theta_t)) \beta \mathbb{E}_t \left\{ \frac{\exp(-d_{t+1})}{\exp(-d_t)} \frac{\lambda_{t+1}}{\lambda_t} \right\} \right) F$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Näf, Stucki, Thomet

University of Bern, SNB

Bargaining Surplus	Fixed Hours	Severance Payments
00	00000	00000

SEVERANCE PAYMENT - PRODUCTIVITY THRESHOLD BACK

Productivity of the marginal worker:

$$\tilde{a}_{t} = \left(\frac{\frac{\xi_{n}}{\lambda_{t}} + \frac{\zeta}{1-\zeta}\theta_{t}\psi\Gamma_{t,\nu}' - \frac{1}{1-\zeta}\frac{\psi\Gamma_{t,\nu}'}{q(\theta_{t})} - \frac{1}{1-\zeta}(1-\theta_{t}q(\theta_{t}))\beta \mathbb{E}_{t}\left\{\frac{\exp(-d_{t+1})}{\exp(-d_{t})}\frac{\lambda_{t+1}}{\lambda_{t}}\right\}F}{Z_{t}^{\frac{\nu}{1+\nu}}\left(\frac{\lambda_{t}}{\xi_{h}}\right)^{\frac{1}{\nu}}\frac{\nu}{1+\nu}}\right)^{\frac{\nu}{1+\nu}}$$

Higher Firing costs reduce the productivity level of the marginal worker. Firms become less willing to fire an unproductive employee.

12 / 12